MATH 6021 Lecture 3 9/21/2020

 $Recall: \mathbb{Z}^{n-1} \in \mathbb{R}^n$ min. hypersurface (immersed)

Stable
$$
\langle z \rangle
$$
 $\int |A|^2 \phi^2 \le \int |\nabla \phi|^2 \quad \forall \, \theta \in C_c^{\infty}(\Sigma)$

Bernstein Thm $(n=3)$: Any entire min graph in \mathbb{R}^3 is flat.

Stable Bernstein Conjecture: $\frac{m}{n}$ complete stable min. hypersurface in IR , B.s.n.s.4 , is flat L Recall countere.g's from

Bombieri - De Giorgi - Grutti

Fisher - Colbrie - Schoen '80, do Carmo - Peng'79:

The conjecture is true when $n = 3$.

- **1** Remark: FCS's proof also works with IR3 replaced by CM3. g of non-negative scalar curvature.
- 2) The proof relies on a " Janishing theorem", which holds also in higher dimensions (recall: (M^n, g) dosed, $Ric > 0 \Rightarrow H'(M; R) = o$)

vanishing Theorem non-cpt Let $\Sigma^{n-1} \subseteq \mathbb{R}^n$ be a complete 2 -sided stable min hypersurface THEN, any 1-form $w \in \Omega^1(\Sigma)$ which is (i) harmonic, ie. $\Delta\omega = 0$ where $\Delta = d\delta + \delta d$ (ii) and in L^2 , ie. $\int \frac{1}{2} |\omega|^{-\frac{1}{2} + \infty}$ I must be identically zero, ie $\omega \equiv 0$.

Remark: This holds in all dimensions.

Proof:	Key ideas:	B6chner technique	A stability	the
Step 1: Use stability, the p -to be the a "weighted" stability, the q -to be				
(1)	\n $\int [1\omega \text{L}(1\omega 1)] \varphi^2 \leq \int \omega ^2 \nabla \varphi ^2 \quad \forall \varphi \in C^2(\Sigma)$ \n			
here:	The Jacobi operator	$L := \Delta_{\Sigma} + 1A1^2$		
Recall:	Σ stable: $\Rightarrow \int [1A]^2 \varphi^2 \leq \int [10\varphi_1^2] \quad \forall \varphi \in C^2(\Sigma)$			
Let $\omega \in \Omega^1(\Sigma)$ be an L^2 harmonic L -form R	Thus, the $\int P\log^{-1}M$			
Set: $f := \omega \geq 0$ Lip. Take $\varphi = f \varphi$ opt. Apply.				
$\Rightarrow \int_{\Sigma} A ^2 f^2 \varphi^2 \leq \int Q(f\varphi) ^2 = \int Q\varphi ^2 f^2 + Qf ^2 \varphi^2$				
$\Rightarrow \int_{\Sigma} A ^2 f^2 \varphi^2 \leq \int Q(f\varphi) ^2 = \int Q\varphi ^2 f^2 + Qf ^2 \varphi^2$				
Note:	$\int 2 \varphi f(Qf, Q\varphi) = \frac{1}{2} \int Qf^2 \cdot Q\varphi^2$			
$\frac{d}{dz} = -\frac{1}{2} \int Q^2 \Delta f^2 = -\int \frac{Q^2}{2} (f \Delta f + Qf ^2)$				
$\frac{d}{dz} = -\frac{1}{2} \int Q^2 \Delta f^2 = -\int \frac{Q^2}{2} (f \Delta f + Qf ^$				

Putting it back, we obtain

$$
\int_{\Sigma} |A|^2 f^2 \varphi^2 + f \Delta f \varphi^2 \leq \int_{\Sigma} f^2 |Q\varphi|^2
$$

\n
$$
(\frac{f \Delta f + |A|^2 f^2}{f^2}) \varphi^2
$$

\n
$$
(\frac{f \Delta f + |A|^2 f^2}{f^2}) \varphi^2
$$

\n
$$
(\frac{f \Delta f}{f}) \varphi^2
$$

\nThis finishes step 1.

Step 2: Compute L(IWI) using Bôchner formula. Recall: BSchner formule for harmonic 1-forms W on E $\frac{1}{2}\Delta(\omega)^2 = |\nabla \omega|^2 + \text{Ric}_2(\omega^*, \omega^*)$ need to evaluate this! We first rewrite the Ricci term using the Ganss eq.". Gauss eq¹: Rijke = hichje - hichje where A = (hij) $2^{nd} f.f. + \sum$ $(R^4$ flat) $= 0$: 2 min $\frac{\text{trace}}{\text{over }j,k}$ $R_{ik}^2 = hik \sum_{j} h_{ij}^2 - \sum_{j} h_{ij} h_{jk} \approx -A^2$
over j. R Locally, write $\omega = \sum_{i=1}^{n-1} a_i \Theta^i$ in some local 0.N.B. of 1-forms $\{\Theta^i\}$ Then, $R_i \tilde{c} (\omega^*, \omega^*) = \sum_{i,k} R_{ik}^{\epsilon} a^i a^k = - \sum_{i,j,k} h_i^{j} h_{j,k} a^i a^k = - |A(\omega^*)|^2$ Now, we compute (*) Note: $|w|$ $L(uu1) = |w|$ $(L \Delta |w1 + |A|^2 |w1)$ $\frac{1}{2}\Delta(\omega)^2$ = $|w| \Delta |w| + |\nabla |w||^2$ $=$ $|w|$ $\Delta |w|$ + $|A|^{2}$ $|w|^{2}$ $\frac{1}{2} \sum_{i=1}^{N} \frac{1}{N} \left| \omega \right|^2 - |\nabla |\omega| \Big|^2 + |\nabla^2 |\omega|^2$ Bôchmer = $|\nabla\omega|^2 + Ric^2(\omega^4, \omega^4) - |\nabla|\omega|^2 + |A|^2|\omega|^2$ $-19(\omega^4)^2$ $= |Q\omega|^{2} - |Q|\omega||^{2} + |A^{2}|\omega|^{2} - |A\omega^{2}|^{2}$ 30 by Kato's ineq. 30 by Cauchy-Schwez

We want to squeeze out a bit more from the first term.

Enchanced Kato's ineq: $|\nabla\omega|^2 - |\nabla|\omega|^2 \ge \frac{1}{n-2} |\nabla\omega|^2$ (for harmonic W) n23

Reason : (This is just an algebraic lemma)

i.e. (ai;j) is symm. trace.free
(a-i) = (n-i) metrix $\begin{array}{ccc} \text{locally,} & \omega = \sum_i a_i \theta'. & & \text{(u-i) * (n-i) matrix} \\ & & \text{if } d\omega = 0 & & \text{if } a_{ij} = a_{ji} \end{array}$ w harmonic $\langle 3 \rangle$ aw = 0
Sw = 0 $a_{ij} = a_{ji}$ $\delta \omega = 0$ $\sum_i a_{i,i} = 0$

WLOG, at $p \in \mathbb{Z}$, assume $A_1(p) = |w|$, $A_1(p) = 0$ for iz z ie $\theta' = \frac{\omega}{\ln 1}$ at p.

Claim:	$ \nabla \omega ^{-2} = \sum_{k} a_{ijk}$ at ρ	
After:	$ \nabla \omega ^{2} = 2 \omega \nabla (\omega)$	$\sum_{i} a_{i}^{2}$
After:	$ \omega ^{2} \nabla \omega ^{2} = \nabla \omega ^{2} ^{2} = \sum_{k} (\omega ^{2})_{ik}^{2}$	
When:	$ \omega ^{2} \nabla \omega ^{2} = \nabla \omega ^{2} ^{2} = \sum_{k} (\omega ^{2})_{ik}^{2}$	
When:	$ \omega ^{2} = \sum_{k} (2 \sum_{i} a_{i} a_{ijk})^{2} = \mu a_{i}^{2} \sum_{k} a_{ijk}^{2}$	
So:	$ \nabla \omega ^{2} = \sum_{k=1}^{n-1} a_{ijk}^{2} = \frac{a_{ijk}^{2}}{k!} + \sum_{k \neq 1} a_{ijk}^{2} \sum_{k \neq i} a_{ijk}^{2}$	
So:	$ \nabla \omega ^{2} = \sum_{k=1}^{n-1} a_{ijk}^{2} = \frac{a_{ijk}^{2}}{k!} + \sum_{k \neq i} a_{ijk}^{2} \sum_{k \neq i} a_{ijk}^{2}$	

Altogether, I $\frac{1}{h-2}$) | $\nabla |\omega|$ |² $\leq \sum_{k} a_{ijk} + \sum_{k+1} a_{ijk} + \sum_{k+1} a_{k,k}$ $\leq |\nabla \omega|$ (4) $\nabla \omega = (\alpha_{ij})$ Thi's finishes $|\nabla\omega|^2 \geq \sum_{i,j} a_{ij}^2$ $(a_{i,j}) = \begin{pmatrix} a_{1i1} & a_{1i1} & a_{1i} \\ a_{1i1} & a_{1i1} & a_{1i1} \end{pmatrix}$ $Stup 2$.

Step 3: Weafstad stability	1	a cut-off argument.
Step 1.4.2 imply $VP \in C^2(\mathbb{E})$.		
$\frac{1}{n-2} \int V \omega ^2 y^2 \le \int w L w y ^2 \le \int w ^2 Q\psi ^2$		
Take $\mathcal{P} = \mathcal{P}_{\mathbb{Q}}$ cutoff from	$ \nabla \mathcal{P}_{\mathbb{Q}} ^2 \approx \frac{1}{R^2}$ in $B_{\mathbb{Q}}^{\mathbb{E}} B_{\mathbb{R}}^{\mathbb{E}}$	
Take $\mathcal{P} = \mathcal{P}_{\mathbb{Q}}$ cutoff from	$ \nabla \mathcal{P}_{\mathbb{Q}} ^2 \approx \frac{1}{R^2}$ in $B_{\mathbb{Q}}^{\mathbb{E}} B_{\mathbb{R}}^{\mathbb{E}}$	
Use have	$\frac{1}{n-2} \int Q \omega ^2 \mathcal{P}_{\mathbb{R}}^2 \le \int w ^2 Q\mathcal{P}_{\mathbb{R}} ^2 \le \int w ^2 \mathcal{P}_{\mathbb{R}}^2 \le \frac{C}{R^2} \int w ^2$	
As $R \Rightarrow \infty$, this implies $\nabla \omega \equiv 0$, i.e. ω is a parallel 4-form		
$\Rightarrow \omega \equiv \text{const.} = 0$ (if $\int \omega ^2 < +\infty$ 4.2 has infinite area.)		
Now, we proceed to prove:	$ \text{model term by Res}$	
From (FCS 80) Any complete, $\frac{2-3 \text{d}(\text{d}x) }{2} \Rightarrow \text{d}x \neq 0$		
From 1: (Covering Stability)		
The universal cover $\mathbb{Z} \Rightarrow \mathbb{Z} \Rightarrow \mathbb{Z} \Rightarrow \mathbb{R}$		

We prove these two claims first.

Proof of Claim 1: 1st Directlet eigenvalue on Ω $\frac{1}{2}$ Σ stable \Leftrightarrow $\lambda_1(-L, \Omega)$ 30 and Ω cc Σ "domain monotonierty" domain monotoniutz $\lambda_1(-L, \Omega,) > \lambda_1(-L, \Omega,) \implies \lambda_1(-L, \Omega,) > 0 \quad \forall \Omega \in \mathcal{L}$ where $\Omega_1 \subseteq \Omega_2$ CC Σ

 \bullet "Fredholm alternative" \Rightarrow 3! solution $U_R > 0$ et.

$$
\begin{cases}\n\text{L}_{u_R} = 0 & \text{in } \Omega = B_R^{\Sigma} < c \Sigma \\
\text{u}_R|_{D_{\Omega}} = 1 & \text{beed at } p \approx 0.\n\end{cases}
$$

• Set $V_R := \frac{U_R}{U_R(0)}$ where $0 = P \in \Sigma$ is some fixed pt.

THEN. Hannack *ineq*
$$
\Delta
$$
 elliptic theory \Rightarrow $||v_R||_{C^3(k)} \le C(k)$
on any $K \subset C \Sigma$.

• By Arzela-Ascoli,
$$
\Rightarrow
$$
 3 subsq R: \rightarrow + ∞ s.t.
\n $V_{R_i} \xrightarrow{C^2 \text{ on cpt subset}} V > 0$

$$
\begin{cases}\nL_V = 0 & \text{in } \Sigma \\
V(0) = 1 & (\text{in } V \text{ is non-trivial})\n\end{cases}
$$

i.e. \exists positive Jacobi field on the entire Σ .

 \cdot Lift v from Σ to $\widetilde{\Sigma}$, ie. W := $V \circ \Pi$ where $\Pi: \widetilde{\Sigma} \to \Sigma$

$$
\Rightarrow \quad W \in C^{0}(\tilde{\Sigma}) \quad \text{and} \quad L^{\tilde{\Sigma}} W = O \quad (i.e. \quad \tilde{\Delta}W + i\tilde{A}i^{2}W = O)
$$
\n
$$
W > O \qquad \text{where} \quad L^{\tilde{\Sigma}} := \Delta_{\tilde{\Sigma}} + i\tilde{A}i^{2}
$$

$$
\frac{Cla_{\text{min}}}{\frac{1}{2}} = \frac{1}{2} \text{ if } \frac{1}{2} \
$$

 $\mathcal{L}:$ What about higher dim (but co-dim 1)?

We have at least the following result:

Thm: (Schoen. Simon. Yau '75) Let $3 \le n \le 6$. Suppose $\Sigma^{n-1} \in R^n$ is a complete, stable, 2-sided min. immersed hypersortece it it has Enclidean valume growth \exists C > 0 st $|\Sigma \cap B_{R}(\omega)| \le C R^{n-1}$ $V R > 0$ Then. Σ is a flat hyperplane.

 $|A|\leq C \Rightarrow ||N||_{C} \leq C$